UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE O Level

MARK SCHEME for the May/June 2006 question paper

5070 CHEMISTRY

5070/02 Paper 2 maximum raw mark 75

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses

Page 2	Mark Scheme	Syllabus Paper	Paper
	GCE O Level – May/June 2006	5070	02

Section A

Maximum 45 marks

A1 five names at (1) each

penalise correct formulae once only

- (a) nickel
- (b) aluminium or sodium
- (c) aluminium oxide
- (d) nitrogen or phosphorus
- (e) iron or nickel

[Total: 5]

A2 (a) C

[1]

(b) C

[1]

(c) D and E both needed for

[1]

(d) six entries to the table:

all six correct

(2)

five correct

(1)

less than five

(0)

[2]

	atom	ion
protons	19	19
electrons	19	18
neutrons	20	20

[Total: 5]

	Page 3			Mark Scheme	Syllabus	Paper
				GCE O Level – May/June 2006 5070		02
А3	(a)	(i)	<u>one</u>	characteristic:	(1)	
			e.g.	same chemical reactions gradation in physical differ by CH ₂	ical properties	
			<u>not</u>	has a general formula		
				ula is C _n H _{2n}	(4)	
		1101	(CH	l2 <i>)</i> n	(1)	
						[2]
	(b)	(i)	·	ation : $2C_3H_6 + 9O_2 \rightarrow 6CO_2 + 6H_2O$		
				ymbols correct ect balance	(1) (1)	
		(ii)	subs	stitution reaction	(1)	
						[3]
	(c)	nan	ne pro	opene <i>or</i> propylene	(1)	
	` ,			tructure with double bond shown and all H atoms ind	icated (1)	
						[2]
						[Total: 7]
A4	(a)	equ	ation	: $CaCO_3 \rightarrow CaO + CO_2$		[1]
	(b)	(i)	equa	ation: CaO + $H_2O \rightarrow Ca(OH)_2$	(1)	
		(ii)	<u>nam</u>	<u>e</u> is calcium carbonate	(1)	
						[2]
	(c)	any	one	large scale use e.g.		
		neu	ıtralis	mortar/ making plaster/ for limewash/ softening e acid soil/ manufacture of sodium carbonate/ wasl	ning soda/ ma	
		pov	vder/	removing acidic gases or removing acidic waste in in	dustry	[1]
	(d)	cald	culatio	on		[3]
			11 ^	f Ca-SiO- is 228 Ca(OH). 74		
		•	456	f Ca $_3$ SiO $_5$ is 228, Ca(OH) $_2$ - 74 g Ca $_3$ SiO $_5$ gives 222 g Ca(OH) $_2$ (mark for correct rat g Ca $_3$ SiO $_5$ gives 444 g Ca(OH) $_2$	io)	

[Total: 7]

Page 4		4	Mark Scheme	Syllabus	Paper
			GCE O Level – May/June 2006	5070	02
A5 (a	a)	formu	ula is SiC		[1]
(I			nite has free / delocalised / mobile electrons loes not	(1) (1)	
		010 0	ioco not	(1)	[0]
					[2]
(c))	(i) S	SiC has <u>many</u> strong /covalent bonds	(1)	
		(ii) c	liamond has strong <u>er</u> bonds	(1)	
					[2]
(0	d)	answ	er 4.40 g		[1]
					[Total: 6]
A6 (a	a)	two o	bservations at (1) each:		
		floats	on the surface moves bubbles dissolves/disappears	3	[2]
(i	b)	equa	tion: 2 Li + 2 $H_2O \rightarrow 2$ LiOH + H_2		[1]
(0	c)	electi	ron loss is oxidation or oxidation is an increase in O.N.		[1]
(0	•		bservations		
		explo	des/pops burns/flame		[2]
					[Total: 6]
A7 (a	a)		graphs are (roughly) similar	(1)	
			or high CO ₂ matches high temperatures	(1)	
		r	<u>wo</u> effects at (1) each: nelting of polar ice or rise in sea levels		
		C	lesertification/ <u>extreme</u> climate changes/effect on animal/	plant habitats(2)	
(1	b)	dot a	nd cross for CO ₂		[3]
•	,		its (1) only no double bond (0)	(2)	[2]
4	- \	(1)		(4)	[²]
(0	c)	(I) <u>r</u>	name methane	(1)	
		(ii) c	cow flatulence or decay of vegetation	(1)	
			wo points from ozone absorbs u.v. light/protects against u.v. light		
		(CFC's or chlorine atoms react with ozone	(2)	
		(CFCs deplete the ozone layer/reduce the amount of ozon	ie (2)	
					[4]
					[Total: 9]

[Total for Section A: 45]

Page 5	Mark Scheme	Syllabus	Paper
	GCE O Level – May/June 2006	5070	02

Section B

Answer any three questions

B8 (a) source is fertilisers or detergents

[1]

- (b) any three points from four
 - algal bloom forms
 - this blocks sunlight
 - · water plants die
 - bacteria remove oxygen from the water

[3]

(c) (i) either add Al and NaOH and warm

NH₃ turns litmus blue

or add <u>conc.</u> H₂SO₄ and FeSO₄ brown ring forms

own ring forms (2)

(ii) nitrate ion too dilute

[3]

(1)

(d) calculation

mols of l_2 is $0.508/(2 \times 127) = 0.002$

mols of O_2 is 0.002/2 = 0.001 conc. of O_2 is 0.001/2 = 0.0005 mol dm⁻³

[3]

[Total: 10]

Page 6	Mark Scheme	Syllabus Paper	Paper
	GCE O Level – May/June 2006	5070	02

B9 (a) ionic equation

NH₃ + H⁺ → NH₄⁺ allow full ionic equation showing spectator ions ignore incorrect state symbols

[1]

(b) preparation of KC*l*

- correct reagents: HC1(aq) and KOH(aq) or K2CO3(aq) or KHCO3(aq)
- (description of a) titration
- repeat without the indicator
- evaporate to crystallise or to dryness

[4]

(c)
$$M_r \text{ K}_2\text{CO}_3 = 138 + \text{K}_2\text{SO}_4 = 178 \text{ (or moles K}_2\text{CO}_3 = 3.45/138 = 0.025);}$$

 $1 \times 138g \text{ K}_2\text{CO}_3 \rightarrow 1 \times 178g \text{ K}_2\text{SO}_4 \text{ (or moles K}_2\text{SO}_4 = 0.025);}$
 $3.45g \text{ K}_2\text{CO}_3 \rightarrow 3.45 \times 178/138g \text{ K}_2\text{SO}_4 = 4.35g}$
(or mass $\text{K}_2\text{SO}_4 = 0.025 \times 174 = 4.35g)$

[3]

chloride ion Cl structure 2.8.8 (1)

2.8.8 for both with K and CI shown in centre (1); correct charges (1)

[2]

[Total: 10]

(1)

Page 7		Mark Scheme	Syllabus Paper	
		GCE O Level – May/June 2006	5070	02
B10(a)	atoms	s in brass do not slide as easily		[1]
(b)	(iii) a • b • C • A • w • b • Z • p • fc • p •	olour is blue ny 5 of: lue precipitate; cu ²⁺ + 2OH ⁻ → Cu(OH) ₂ LLOW: full equation white precipitate masked by blue one/ ppt lighter blue in organization ydroxide alone cn ²⁺ + 2OH ⁻ → Zn(OH) ₂ LLOW: full equation recipitates are copper hydroxide and zinc hydroxide or experimentation recipitates are copper hydroxide and zinc hydroxide or experimentation of the precipitate redissolves in excess (sodium hydroxide)	correct	ith copper
(c)		ames: B is zinc chloride	('	
	(ii) <u>ic</u>	<u>onic</u> equation	(*	1)
	Z	$n + 2 H^+ \rightarrow Zn^{2+} + H_2$		
				[3]
				[Total: 10]
B11(a)	ester	linkage		[1]
(b)	(i) m	nonomers are amino acids	(*	1)
	(ii) n	ylon is hydrolysed (by the acid)	(*	1) [2]
(c)	(i) st	tructure of pvc:	('	1)
	-	(CH ₂ — CHC <i>l</i>) _n — or full structure		
	(ii) w	eak forces <u>between</u> the <u>molecules</u>	(*	1)
	а	llow weak van der Waals forces <u>between molecules</u>		
	it	orange) bromine is decolourised is an addition reaction vc has no double bonds		1) 1) 1) [5]
(d)	cause	om: nene is not biodegradable es litter <i>or</i> use of land fill sites poisonous fumes if burnt	(*	1)
	(O/10/)	ociosilodo idilito il partit	([2]
				[Total: 10]